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We develop a method by which certain classical equations of state may be 
modified to produce nonclassical critical scaling behavior. We then apply 
this method to the classical free energy describing a tricritical point that 
was originally introduced by Griffiths. The phase behavior of the resulting 
nonclassical free energy is characterized by the competition between critical 
scaling and tricritical scaling already envisioned by previous authors. 
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1. I N T R O D U C T I O N  

In  an earlier paper <1~ we examined the characteristic phase behavior associ- 
ated with tricritical points (i.e., the rmodynamic  states in which three phases 
become simultaneously identical) in two classical fluid mixture models. The 
description o f  tricritical phenomena  given by these classical formulat ions is 
self-consistent and in qualitative agreement with the very limited data presently 
available f rom experimental investigations of  tricritical points in ternary and 
quaternary fluid mixtures, a We expect that  the classically predicted phase 
diagrams are correct insofar as the basic topology of  the various coexistence 
and critical manifolds is concerned. But classical equations o f  state are well 
known for  their failure to correctly describe the merging of  two phases at a 
critical point, and, since a tricritical point  is intimately connected with 
critical points in these phase diagrams, we must  seriously consider the 

Work supported by the National Science Foundation and the Cornell University 
Materials Science Center. 

1 Department of Chemistry, Cornell University, Ithaca, New York. 
2 Present address: Department of Chemistry, Stanford University, Stanford, California. 
a Footnotes 3-10 of Ref. 1 provide a comprehensive list of experimental investigations of 

tricritical points in fluid mixtures. 

243 
0022-4715[79/0900-0243503.00]0 �9 1979 Plenum Publishing Corporation 



244 Jeffrey R, Fox 

question of how and to what extent the classical picture of tricritical phe- 
nomena should be modified to take this failure into account. 

A tricritical point is an invariant point for systems with four thermo- 
dynamic degrees of freedom. Figure 1 shows the connectivity of the triple 
point and critical surfaces near a tricritical point in a projection of the phase 
diagram in the space of four field ~ variables (e.g., the four-space of tempera- 
ture and three independent chemical potentials). We see that the tricritieal 
point lies on a surface of critical points and that every neighborhood of the 
tricritical point will contain part of this surface. Thus, even though the 
asymptotic variation (as a t.ricritical point is approached) of the thermody- 
namic quantities relevant to phase separation (in particular, the chemical 
compositions of phases in mutual equilibrium) are known from the calcula- 
tions of the renormalization group theory to be classical (3> (at least insofar as 
their leading power law exponents are concerned), it would nevertheless be 
incorrect to suppose that the classical theory will become increasingly accurate 
when applied to ever smaller neighborhoods of such a point. 

A more attractive hypothesis, originally introduced by Riedel (~ and 
examined by a number of authors, (5> may be stated as follows. We suppose 
that, as the state of a system approaches a point on the critical surface, the 
asymptotic variation of the relevant thermodynamic quantities will be 
accurately described by an appropriate generalization of the nonclassical 
scaling theory proposed by Widom (6~ and known to be correct to within 

4 We make the useful distinction, introduced by Griffiths and Wheeler, C2~ between 
" f ie ld"  variables, such as the temperature, pressure, and the component  chemical 
potentials, which are always identical in two coexisting phases, and "dens i ty"  variables, 
such as the mole fractions of particle number  densities of the components,  which are 
generally different in two coexisting phases. 

L L ~  

t C 

oi 
Fig. 1. A schematic representation of the triple point (T) and critical point (C) surfaces 
near a tricritical point (B) in a projection from the full four-dimensional field-space 
phase diagram. The two surfaces meet nontangentially at the critical end-point lines 
P'  and Q'. 
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experimental error near ordinary critical points. But if the state of the system 
specifically approaches the tricritical point, these asymptotic variations will 
be of a form which satisfies classical tricritical scaling (i.e., the tricritical 
scaling behavior of the classical models). Thus, we expect that, as the state 
of  a system varies along some trajectory in the space of the field variables 
(i.e., the space shown in Fig. 1), the resulting phase behavior will reflect a 
competition between the two different scaling influences, and that the relative 
dominance of one scaling influence or the other will be dependent upon the 
direction of this variation in the field space and upon the relative proximity 
of  the critical surface and the tricritical point. 

In the present paper we develop a method by which nonclassical critical 
scaling behavior may be incorporated directly into the formal structure of 
certain simple classical equations of state. In Section 2 we illustrate this 
method through its application to the case of a classical Landau expansion 
about a critical point, and in Section 3 we apply it to a Landau formulation 
describing a critical line. We have not been able to apply this method directly 
to the case of a tricritical point because of the additional complexity of the 
phase behavior near such a point. But, by making a number of  additional 
assumptions which go beyond the critical scaling hypothesis upon which the 
method is based, we are finally able, in Section 4, to produce a nonclassical 
equation of  state which describes a tricritical point. By obtaining such an 
equation of state, we are then able to investigate the resulting mechanism of 
the competition between nonclassical critical and classical tricritical scaling, 
and to indicate what discrepancies between the classical predictions and the 
behavior of real fluid mixtures may be expected. 

2. N O N C L A S S I C A L  E Q U A T I O N  OF STATE D E S C R I B I N G  A 
C R I T I C A L  P O I N T  

The procedure we introduce in this section for the incorporation of non- 
classical critical scaling into the structure of a classical equation of state has 
yet to be judged on any but the most pragmatic grounds. Though the scaling 
hypothesis upon which our procedure is based may be formally related to the 
homogeneity hypothesis of Widom, (6~ we have not endeavored to make such 
a connection; we regard our method only as a mathematical technique 
designed to reproduce the nonclassical behavior of experimental systems and 
not as a theoretical statement about microscopic interactions and correlations 
which underlie this behavior. 

We take the viewpoint that the gross implications of  classical theory, 
such as the phase diagram in the field space, are qualitatively correct. But 
we now restructure the singular part of the classical free energy so that the 
next level of detail--the critical exponents associated with the variations of 
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the densities and higher derivatives of the free energy--becomes correct as 
well. And whereas we could in principle apply our method to a variety of  
phenomenological equations of state (e.g., that of  van der Waals or the 
virial expansion to finite order), we apply it here to the Landau order- 
parameter expansion about a critical point because the general features of 
classical theory upon which our "reconstruct ion" is based are most readily 
apparent in this formulation. 

In the Landau philosophy we suppose that the free energy of a system 
with two thermodynamic degrees of freedom may be approximated near a 
critical point by the form 

F ( a l ,  a2) = min(al~b + a2~b 2 + ~b 4) + B ( a l ,  a2) (1) 

where the model field variables a~ are analytic functions of the real fields 
(e.g., temperature and pressure for a one-component fluid), al = a2 = 0 is the 
critical point, and B ( a l ,  a2) is an analytic background free energy. (The 
explicit relations between al ,  a2, B, and the real fields will, of  course, depend 
upon the particular system being modeled; but these relations are not 
important to our discussion here.) 

We note that the polynomial in ~b may be reparametrized in the form 

a ~b  + a2~  2 + ~b 4 = (~b - c)2[(~b + c) 2 + R 2] - c2(c 2 + R 2) (2) 

with the parameters e and R 2 defined by 

a l  = - 2 c R  ~ (3a) 

a2 = R 2 -  2e 2 (3b) 

and in this form we may trivially perform the indicated minimization over ~b, 
with the result that F ( a ~ ,  a2) may be expressed in a purely parametric form 

F ( a l ,  a2) = - c 2 ( c  2 + R 2) + B ( a l ,  a2) (4) 

Now in terms of these parameters, the densities p~ conjugate to the fields az 
are 

p l  =- - ~ F / ~ a z  = - e - B1 (5a) 

p2 = - OF/~a2 = - c 2 - B2 (5b) 

with B~ - OB/~a,  (and thus analytic in the a~). 
When the values of al and a2 are such that the polynomial in Eq. (2) has 

two equal minima [i.e., such that two different sets of values of c and R 2 
are consistent with Eq. (3)], then the point (a~, a2) is a point of two-phase 
coexistence in the a~ field space, and the two corresponding points in the p~ 
density space are the compositions of the two phases in mutual equilibrium. 
The phase diagrams of  this model may thus be trivially determined; the two- 
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phase region is characterized by al = 0, a2 ~< 0 (or, parametrically, R 2 = 0),  

and in this region (i.e., on this coexistence curve in the field space) the 
densities are (plus and minus signs indicating the two equilibrium phases) 

p l (  + ) = + ( -  a2 /2)  1/2 - B1 (6a) 

p2(+)  = �89 - B2 (6b) 

The field-space and density-space phase diagrams of this model are shown in 
Fig. 2. In the a~ field space (Fig. 2a), the negative a2 axis is the coexistence 
curve, and it terminates in a critical point at the origin. The p~ density-space 
phase diagram is characterized by a binodal curve (the "classical" curve 
indicated in the figure) composed of the end points of  the lines joining equilib- 
rium phases. 

The results of  experimental investigations near critical points may be 
expressed in this language by the asymptotic relations 

pl + B~ ,-, ( - a 2 )  B (7a) 

P2 + B2 "~ ( - a 2 )  ~ -~  (7b) 

with the critical exponent values fl ~ 0.35 and c~ m 0.1 for pure fluids/7~ 
That  is, we expect that if we make an analogy between the field-space phase 
diagram, Fig. 2a, and that of  a real fluid in the near-critical region, we 
would expect the corresponding binodal curve to be consistent with the 
asymptotic relation 

(p2 + B2) ~ I m  + Bll ~l-"~a 

]~ 2+ B2 

Q2 
Ql' 

O 

(a) (b) 

Fig. 2. (a) Field-space phase diagram of the classical Landau expansion about a critical 
point [Eq. (1)] and, identically, the field-space phase diagram of the corresponding 
nonclassical system [Eq. (18)]. The coexistence curve D terminates in a critical point C. 
(b) Density-space phase diagram of the classical system [Eq. (1)] and the corresponding 
nonclassical system [Eq. (18)]. E is the binodal curve of the classical system and E' is 
that of the nonclassical system. The dashed lines are typical tie-lines joining phases in 
mutual equilibrium. 



248 Jeffrey R. Fox 

and thus have significantly less curvature at the critical point than the classic- 
ally predicted parabola. (The difference between these curves is again shown 
in Fig. 2b.) 

So we see that in order to produce the density relations characteristic of 
experimental systems, we must somehow change the way the singular part 
of the free energy 

Fs(al,  a2) = min(al~ + a2~b 2 + ~ )  = - c 2 ( c  2 + R 2) (8) 

varies or "scales" with the fields aj as the critical point al = a2 = 0 is 
approached. We may express the classical scaling by the relation 

Fs(al,  a2) = h-~F,(haal, h2a2) (9) 

(where h is any positive parameter), or, upon differentiation, 

p,s(ax, a2) - - cqF,/cOa, -- A-~p,,(h3al, h2a2) (10) 

(i.e., p,~ is the contribution to p~ from Fs). 
Now suppose we could replace F,(al ,  a2) with a new singular function 

F / w i t h  the scaling property 

F / ( a l ,  az) = h- ~F/(h 3 + Oal, h 2 + ~ (11) 

i.e., a new scaling form which differs from the classical form by the "smal l "  
exponents 0 and 4. We would then have new density relations with the scaling 

p'lJal ,  a2) = h e - l p[~(ha +*al, h 2 + ~ (12a) 

t a P28( 1, a2) h~ h2+~ (12b) 

and, if F / i s  constructed such that it generates the same phase diagram as F~ 
in the field space, the densities in the two-phase region will obey 

pi~(O, a2) = [a2l(1-*'m+~ - 1) (13a) 

p~.~(O, a2) = ]a2](2-~176 - 1) (13b) 

i.e., p~ ~ ( - a 2 )  a and p~ ~ ( - a 2 )  1-", the desired behavior, with the identi- 
fications/3 = (1 - 4)/(2 + 0) and 1 - c~ = (2 - 0)/(2 + 0). 

We describe the task of  constructing a function F / w h i c h  has the indi- 
cated properties as the reconstruction or "rescaling" of F~ (or more generally 
as the rescaling of the classical free energy F). Now we could equally well 
have described the "rescaling" in terms of the parameters e and R of  the 
parametric representation of F(a~, a2). For example, we could introduce the 
function F/parametr ical ly :  

F/ (az ,  a2) = - c 2 ( e  2 + R 2) (14) 
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but now with 
al = - 2cR2[g(c,  R)] ~ (15a) 

and 

a2 = (R  2 - 2c2)[g(c, R)] ~ (15b) 

where g(c, R)  is a positive-valued scaling function with the scaling property 
g(c, R )  = A-Zg(Ac, AR). This construction implies that 

al(c, R )  = ,~- 3-  ~al(Ac, AR) 

and 

and thus 

a2(c, R )  = h -  2-  Oa2(hc, AR) 

(16a) 

(16b) 

Fs'(al ,  a2) = A-  4F~'(A 3 + ~al, h 2 + ~ (17) 

i.e., Fs' has the desired scaling form. We have reduced the problem of re- 
scaling F ( a l ,  a2), then, to the problem of finding an appropriate positive 
homogeneous function g(c, R) .  It can be easily shown that the field-space 
phase diagrams of F and F '  are identical ifg(c, R) is chosen such that it is an 
increasing function of the radial distance from the origin of the c, R plane on 
any straight line through that origin. Note that the scaling properties of g 
imply that g(0, 0) = 0. 

One possible choice for g(e, R )  is the radial distance itself, i.e., g(c, R)  = 
( k l R  2 + k2c2) 112, where kl and k2 are positive coefficients (arbitrary metrics 
of the parameter space). But more generally any of the family of functions 
g(c, R )  = ( k z R  2'~ + k2c2'~) ~/2~ with n a positive integer would also apparently 
be acceptable. Another example is g(c, R) = [(-2cR2) 4 + (R 2 - 2c2)6] zI12 
which, despite its complexity, does in fact simplify the calculation of the 
resulting densities. Using this last choice of  g(c, R),  we may rewrite the 
rescaled free energy in the form 

F'(a~,  a2) = min(b~b + b2~b ~ + ~b 4) + B(a~, a2) (18) 

with the variables b~ and b2 defined by 

a~ = bl(b~ ~ + b26) ~112 (19a) 

a2 = b2(bl ~ + b26) ~ (19b) 

In this particular case, the densities on the coexistence curve (az = 0, a2 ~< 0) 
a r e  

pl'( _+ ) = + 2-  t/2(_ a2)~ _ B~ (20a) 
and 

p2'(-+) = - [1/(2 + 0)](-a2) ~-6 _ B~ (20b) 

with/3 = (1 - ~h)/(2 + 0) and 1 - ~ = (2 - 0)/(2 + 0) as before (note that 
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the classical results are immediately recovered by setting 0 and ~ equal to 
zero). [Similar calculations using the other choices ofg(c, R) mentioned above 
differ from these results only in the coefficients of the singular terms and then 
only by powers or factors of  ~ and 0.] The resulting binodal curve is also 
shown in Fig. 2b. 

So, despite the fact that our procedure is not very well defined by this 
one example, we have produced a new free energy formulation which, when 
"f i t ted"  by setting 0 and q~ equal to their experimental values, will have the 
desired characteristics. We will not here calculate any further thermo- 
dynamic quantities, but the reader may be assured by the fact that Fs' is a 
scaling function that the exponents associated with these quantities will be 
those predicted by the so-called "scaling relations," which are known to be 
correct to within experimental error for fluid systems (Ref. 8, Table 3.4). 
We note that this new equation of state is very similar in many respects to 
that of Schofield, (8~ and we expect that it has many of the same attributes. 

3. NONCLASSICAL EQUATION OF STATE DESCRIBING 
A CRITICAL LINE 

In order to consider the application of the rescaling idea to the case of a 
coexistence surface terminating in a critical line, we must first choose a 
classical system with three degrees of freedom which shows the appropriate 
behavior. As in the previous case, in principle any of a number of phenomeno- 
logical equations of state might be used, but for simplicity we choose a system 
of the Landau type; in this case, an order-parameter expansion about one 
point a critical line. The free energy in question is 

F ( a l ,  a2, aa) = min(al~b + a2~b 2 + aa~b 3 + ~b ~) + B ( a l ,  a2, a3) (21) 

where again the model fields a~- are analytic functions of the real fields and 
B ( a l ,  a2, aa) is an analytic background. 

We note that we may also write this free energy in a parametric form, 
i.e,~ 

F ( a l ,  a2, aa) = -c12(c22 + R 2) + B (a l ,  a2, aa) 

with the parameters cl, c2, and R 2 defined by 

al = - 2 c l r  2 - 2clc2(cl  + c2) 

a2 = R 2 + cl 2 + c2 2 + 4clc2 

aa = -2(c~ + c2) 

and in terms of these parameters, the conjugate densities are 

p~ = - c l  i - Bi (a l ,  a2, aa) 

(22) 

(23a) 

(23b) 

(23c) 

(24) 
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But we may  also greatly simplify the fo rm of  F ( a ~ ,  a2 ,  aa) by a change of  
variable ~ - r - aa/4; i.e., 

F ( a ~ ,  a2 ,  aa) = min(bl~ + b2~ 2 + ~7 ~) + E + B (25) 

with 
bl  = a l  - �89 + {aa  8 (26a) 

b2 = as - -~a32 (26b) 

E = - � 8 8  + a2(a3 /4)  2 - 3(a3/4) ~ (27) 

Since E ( a l ,  a2, a,) is analytic in the fields, it may  be treated as another  
background,  and we see that  the singular part  o f  F is of  the same form we 
treated in the previous section. But here the conditions for coexisting phases 
(b~ = 0, b2 ~< 0) describe a surface in the aj field space, and the critical 
conditions b~ = b2 = 0 describe a critical line bounding  that  surface. The 
phase diagram in the aj field space is shown schematically in Fig. 3. 

Now in the parametr ic  form, we have 

F = -�88 - c2)2[�88 - c2) 2 + R 21 + E + B (28) 

with (cl - ca) and R 2 defined by 

b l  = a l  - �89 + ~a32 = - ( c ~  - c 2 ) R  2 (29a) 

b2 = a2 - 3a32 = R 2 - �89 - c2) 2 (29b) 

We now replace Fs with F~' by rescaling the scaling fields b~; i.e., the rescaled 
free energy is 

r ' ( a ~ ,  a2 ,  a3) = - � 8 8  - c2)~[�88 - e2) 2 + R ~] + E + B (30) 

but  with the new definitions for (cz - c2) and R 2, 

b l  = a l  - �89 + �89 2 = - ( e l  - c 2 ) R 2 [ g ( c l  - ca ,  R)] ~ (31a) 

b2 = a2 - 3aa2 = [R  2 - �89 - e z ) 2 ] [ g ( c l  - e2 ,  R ) ]  ~ (31b) 

with g again chosen such that  it fulfills the conditions outlined in the previous 
section. To illustrate the results o f  this formulat ion,  we choose 

g = { [ - (c~  - c2)R2]  ~ + [R  2 - �89 - c2)216} z/12 (32) 

a fo rm completely analogous to that  we used before. 

Fig. 3. Projection of the a~ field-space phase diagram 
that arises from the Landau order-parameter expansion 
about a point on a critical line [Eq. (21)] [or from the 
corresponding nonclassical system, Eq. (30)]. The 
coexistence surface (D) terminates in a critical line 
(C) passing through the origin. 
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The resulting densities conjugate to the as are, on the coexistence surface, 

01 ' (+)  = + 2 - ~ m ( - b 2 )  ~ - E1 - B1 (33a) 

1 
p2'(  + ) = g 2 -  a / ~ a a ( -  b2) e 2 + 0 ( -  b2)~-  ~ - E2 - B2 (33b) 

3 aa 
P3'( +- ) = -+ 3(2)- 9/~aa2 ( -  bz)  ~ + - - -  ( -  b~) ~ - ~ 

4 2 + O  

+ 2-a/2(-b2)~+B - Ea - Ba (33c) 

The field-space phase diagram for this system is identical to that of  the 
classical system (Fig. 3). The resulting phase diagram in the space of the 
density variables will depend explicitly upon the background term B ( a ~ ,  a2,  aa), 
but it is obvious that the binodal surface described parametrically by the 
density relations above will be nonanalytic (for appropriate nonclassical values 
of  fl and ~) at the critical line b2 = 0. In order to appreciate the nonanalytic 
curvature of  this surface, it is convenient first to consider the density-space 
phase behavior which is developed as the field space point representing the 
state of  the system moves along the coexistence surface and approaches some 
particular point of the critical line. Every such trajectory on the coexistence 
surface will develop the same qualitative behavior (provided it approaches 
the critical line nontangentially) since, as Griffiths and Wheeler (m have pointed 
out, no particular critical point on the line or angle of  trajectory incidence is 
any way thermodynamically special. But the interpretation of this behavior is 
relatively simple, because of our particular choice of  parametrization, on the 
trajectory defined by al = aa = 0. The three-dimensional binodal space curve 
(in the density space) which corresponds to this field space trajectory has the 
asymptotic form [about the critical point p~' = p~c, i.e., p~c = -B~(0, 0, 0) is 
the critical value of p~'] 

(p# + B~) ~ - I r a '  + n~l (~-')/B (34a) 

(m' + B3) ,-' Ira' + B~la+~>zB sgn(m' + B~) (34b) 

# .S# # Pl + 

Fig. 4. The binodal space curves generated by 
the al = a3 = 0 trajectory projected onto the 
P2 = 0 plane of the density space. E is the space 
curve of the classical system [Eq. (21)1, and E' is 
that of the corresponding nonclassical system 
[Eq. (30)]. The dashed lines are tielines and C is 
the critical point. A projection of these curves 
onto the Pa = 0 plane, instead, would be identical 
in every respect to Fig. 2b. 
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Perspectives of  this space curve are shown and contrasted with the 
classical binodal curve in Fig. 4. Along any other trajectory the curve itself 
would be qualitatively similar, but the p~ axes would no longer have any 
special orientation with respect to the curve. We note that the curvature of  
this binodal space curve at the critical point is significantly less than that of  
the classical curve, and thus the binodal surface, which may be viewed as a 
smoothly varying, close-packed series of  such curves, will be flattened about 
the critical line in comparison to the classical binodal surface. 

This completes our discussion of this system, but before we turn to the 
case of  near-tricritical nonclassical phase behavior, it is appropriate to sum- 
marize the mechanics of the rescaling technique insofar as they have been 
illustrated by these simple cases. In both cases we isolated out a singular part  
of  the free energy with the form Fs = - c2 (c  2 + R2), where R 2 = 0 was a 
parametric description of the coexistence manifold and R 2 = 0, c = 0 the 
critical locus. We then redefined the relationship between the scaling fields 
and the parameters c and R 2 by changing the parametric representations of  
those fields, - 2 c R  2 and R 2 - 2c 2, to the "nonclassical"  representations 
- 2 c R 2 g  r and (R 2 -  2c~)g ~ with g ( c , R )  an appropriate homogeneous 
function. 

4. NONCLASSICAL EQUATION OF STATE DESCRIBING 
A TRICRITICAL POINT 

We consider now the problem of constructing an equation of state which 
scales nonclassically as a critical manifold is approached, but which repro- 
duces the classical tricritical scaling as a tricritical point is approached. 

Again, we take a Landau formulat ion-- the order-parameter expansion 
about a tricritical point originally investigated by Griffiths (9~ and examined by 
us in the previous paper(1)--as our " b a s e "  classical system, since we presume 
that it approximates arbitrarily well the near-tricritical phase behavior of  any 
other classical system. This free energy has the form 

F(al ,  a2, aa, a4) = min(al~b + a2d22 + aa~b 3 + a~b 4 + ~6) 
o 

+ B(al ,  a2, aa, a4) (35) 

where again the model fields a~ are analytic functions of  the real fields, and 
B(al ,  a2, aa, a4) is an analytic background. 

We may rewrite the singular part of  this free energy in the form 

Fs = min{(r - cl)2[(~b - c2) 2 + R12][(~b - ca) 2 + R22]} 
~t 

- c~2(c22 + R12)(ca 2 + R~ 2) (36) 
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with the parameters c~, R 9 defined by 

0 = cl + c2 + Ca (37a) 

a~ = 2(ce + ca)R~eRe e - 2ceca(ce + ca)(R~ e + Re  e + ce e + ca e + ceca) (37b) 

a s : (C2 2 "~ Ca 2 + C2C8) 2 -~ (C2 2 - -  2C2C 3 - -  2cae)Rz e 

+ (ca e - 2CeCa - 2c22)Re 2 + R~ZR22 (37c) 

aa = 2ceca(ce + ca) + 2ceR12 + 2caRe e (37d) 

a 4 : R 1  e + R e  z - 2(ce e + ca e + czca) (37e) 

and thus, since the minimization may now be simply performed, we have the 
parametric form 

F = - c ~ 2 ( c e  e + R le ) ( ca  2 + R22) + B (38) 

Now the critical manifolds are defined parametrically by the relations 
cl = c2, R~ = 0 or the relations cx = ca, R2 = 0 (i.e., these are loci of  points 
where two equal minima of the polynomial in ~b merge). Thus, we might expect 
that we must first separate out from Fs terms of the form 

- �88 - ce)e[�88 - ce) e + R12] and - � 8 8  - ca)2[�88 - ca) 2 + R~ e] 

in analogy with the manipulation of the parametric form - c~e(ce e + R e) into 
the form - � 8 8  ce)e [ l (c~-  c 2 ) e +  R e] we performed in the previous 
section using a change of variable. Unfortunately, we have not found any 
such simple manipulation for this case. Nevertheless, we may guess the form 
the rescaled equation might take, based on our experience with the previous 
examples. We propose the form 

F '  = F + hl{ �88 - c2)e[�88 - c2) e + R12] - �88 - se)2[�88 - se) 2 + Q12]} 

+ he{�88 - cs)2[�88 - ca) 2 + R2 e] - �88 - sa)2[�88 - sa) e + Qee]} 
(39) 

where F is the classical free energy above, and h~ and he are as yet unknown 
functions but must be purely quadratic in the c~, Rj parameters since Fs (and 
thus Fs') must be sixth order overall. The st, Qj are the "rescaled"  parameters 
(with scaling yet to be defined); that is, the classical terms in c~, Rj are sub- 
tracted from the classical free energy and replaced with s~, Qj terms of the 
same form. We imagine that the mechanical aspects of  the rescaling of these 
variables would produce definitions of  the form 

- ( s l  - s2)Q12gl  ~ = - (c l  - c2)R12go ~ (40a) 

[Q12 - �89 - s2)2]gl ~ = [R12 - �89 - c2)2]go ~ (40b) 

- ( s l  - s3)Qeeg2 ~ = - ( c l  - c3)Reego ~ (40c) 

[Q22 - �89 - s3)2]ge ~ = [Re e - �89 - ca)e]go ~ (40d) 
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where gl = gl(s l  - s2, QI) and g2 = g2(sl - s3, Qa) are scaling functions of  
the "dis tance"  in the parameter  space to the critical loci s~ = s2, Qz = 0 
(i.e., cz = c a ,  Rz = 0 )  and sl = s 3 ,  Qa = 0  (i.e., cl = c 3 ,  R 2 = 0 ) ,  re- 
spectively; and where go = go(c~ - c~, cl - c3, R1,  Ra) is a scaling function 
of the "dis tance"  to the tricritical point (c~ --= c2, c~ = c3, R~ = 0, R2 = 0); 
i.e., where go has the scaling property 

go[(C~ - ca), (c~ - c3), R1, R2] = h-~go[h(c~ - c2), h(cl - c3), AR~, hR2] (41) 

The point of  these complexities is that in this formulation the parameters 
s~, Qj always scale with their c~, Rj counterparts as the tricritical point is 
approached; thus the classical tricritical scaling, expressed by the relation 

Fs(al,  a2, a3, a4) = A-6F~(hSal, h4a2, h3as, h2a~) (42) 

is preserved in Fs' in spite of  the rescaling. But as a critical manifold is 
approached, the appropriate set of  s~, Q1 parameters- - for  example, sl - s2 
and Q~ as cz approaches ca and R~ approaches zero--scales nonclassically 
with the "scaling fields" - ( c l  - c2)Rz 2 and R~ 2 - 1(c~ - c2) 2 because gz 
will vanish, while go must remain asymptotically constant. 

We may expect then that, if we can choose some appropriate specific 
form for the functions h~ and gj, the resulting free energy will have the 
mixture of classical and nonclassical scaling we hypothesized in the first 
section. But choosing these remaining undefined functions such that the over- 
all thermodynamic stability of  the system is maintained has proven very 
difficult. In order to proceed, we have been forced to choose hz, h2, go such 
that (besides preserving the exchange symmetry ca ~ c3, Rz +-+ R2) a number 
of  "critical matching condit ions" are satisfied. The first of  these matching 
conditions is that as g~ approaches zero (i.e., as the R1 = 0, c~ = c2 critical 
manifold is approached), go must rapidly converge to ga, and similarly, as 
ga approaches zero, go must rapidly converge to g~. The effect of this behavior 
is that as one critical manifold is approached, the s~, Qj associated with the 
other critical manifold rapidly converge to their counterpart  classical 
parameters and thus cancel out in the free energy formulation above. The 
second matching condition stems from the fact that there is a critical con- 
dition not considered above, namely c2 = ca with R~ = R2 = 0. This critical 
condition does not describe a critical point in the density space; rather, it 
describes the noncritical phase in equilibrium with a critical phase at a critical 
end point. The resulting matching condition is that, on this manifold, we 
must have go = gz : g2 and hi = h2 = 0 (but the h~ must not vanish else- 
where). 

We do not know at this point whether these conditions are fully suffi- 
cient for the stability of  this free energy formulation. But by satisfying them 
in the most direct way we have been able to produce stable and apparently 
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satisfactory equations of state. We first choose the functions h,, since this 
choice is not dependent upon the details of the gs functions. We imagine 
hi = h2 with the general form 

h l  = h2 = D[ �88  - c3) 2 + R 12  + R ~  21 (43) 

where D is a positive constant of order unity. Now the functions gl and g2 
could have any form consistent with the restrictions indicated in previous 
sections, but they must both have the same form, since in essence they both 
describe the same manifold in the density space. For  example, using one of 
the general forms for g indicated in Section 2, we may choose 

g l ( s l  - s2 ,  Q t )  = [ k l Q ~ "  + k ~ ( s l  - s2)4~11/4" (44) 

g 2 ( s l  - sa ,  Q 2 )  = [ k l Q ~ "  + k 2 ( s l  - sa)4"] 1I~ (45) 

(where we have changed 2n to 4n to facilitate the resulting definition for go). 
The matching conditions on go may be relatively easily satisfied; for example, 

go = [ k l R ~  ~ + '~11~ R4,~2 + k 2 ( c l  - c2)  4'~ + k 2 ( c l  - ca) 4" 

- k 2 ( c l  - c2)2'~(cl - c3)2~] 1/4" (46) 

is consistent with this choice of g~ and g2. There are, of course, innumerable 
other possibilities for these functions gj, some of which we will discuss later, 
but they differ only in details unrelated to the scaling properties, which are 
our primary interest here. 

In view of the algebraic complexity of this formulation, it would be very 
difficult to survey all of the important behavior of this model, and we have 
not, in fact, done so, except through numerical calculation on various mani- 
folds of interest. Nevertheless, we may make some useful generalizations 
about the competition between the classical and nonclassical influences. We 
note first that the field-space phase diagram of the nonclassical model is 
identical to that of the classical system. But as the state of the system 
approaches the critical manifold (along, say, the coexistence manifold), the 
nonclassical densities have the asymptotic form 

p ( (  + ) = p~( + ) +_ q i d ~ i - 1 ) / 2 ( r i d J d d l 2  - a  _ d~12) _ w i d } i - 2 ) / 2 ( r i d  ~ - ~ d t ~  _ do) 

+ higher order terms in d, (47) 

where plus and minus indicate the two merging phases, p, is the classical 
value of the density i, the coefficients q,, r,, we, and v~ are constants depending 
upon the trajectory of approach (q~ and w, may be zero on trajectories with 
special symmetries), and do and d~ are scaling functions proportional to the 
"distances" in the field space to the critical point in question and to the 
tricritical point, respectively. One can see that the length of the associated 
tie-lines joining the two phases vanishes as the /3 power of the difference 
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between the fields aj and their critical values ajc, since (aj - ajc) ~ de, and 
dt is asymptotically constant. [But note that the terms with nonclassical 
exponents in Eq. (47) are always followed by terms with the complimentary 
classical exponents.] On the other hand, as the trieritieal point is approached, 
d~ ~ dr, and thus on such trajectories all of  the nonclassical exponents 
"cancel  out," leaving only the classical scaling p~' ~ p~ ~ d~ ~. We note also 
that on the critical manifold (de = 0), the critical densities of  the rescaled 
system are exactly equal to the classical critical densities. 

The coefficients r, and v~ are very nearly equal to unity, and thus when 
the state of  the system is far from critical (i.e., when dc is near dr), the deviation 
of the densities p~' from their classical values becomes very insignificant. Thus, 
it is only in the near-critical region of the field space characterized by (do/dJ 
<< 1 that we see significant qualitative and quantitative differences between 
the classical and nonclassical models, and even then qualitative differences 
will show up only along trajectories on which dc varies significantly. In 
particular, the phase behavior along a trajectory which is very near and 
parallel to the critical surface, or along a trajectory on the surface, will be 
almost or exactly identical in the two models. 

Before concluding our discussion of the scaling properties, it is appro- 
priate to consider the resulting nonclassical geometry of the isothermal 
three-phase region investigated classically in the previous paper. (1> We 
associated the field a4 with the temperature (T - Tt), with Tt the tricritical 
temperature, and in an iso-a, (i.e., isothermal) section of the density space, 
the three-phase region was described as a stack of parallel triangles lying 
between two end-point tie-lines (degenerate triangles) as in Fig. 5. Classically, 
the vertices of  the triangles define a single, smooth, analytic curve which we 
called the three-phase equilibrium curve. Since that curve passes through 
two different critical points (P '  and Q' in the figure), we must expect that 

QI 

P 
Fig. 5. A schematic drawing showing the topology of the three-phase region in an iso- 
thermal composition space. The region is a three-dimensional volume spanned by an 
infinite series of triangles (three of which are indicated in the figure) extending between 
the degenerate triangles PP' and QQ'. The points in the interior of each triangle represent 
mixtures unstable with respect to separation into the three equilibrium phases whose 
compositions lie at the vertices of the triangles. P' and Q' are critical phases, each in 
equilibrium with a noncritical phase (P and Q, respectively). 
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Qn 

(a) P3§ B3 Qc//Q/ P2 + B2 
. /  (b) ~-p' 

Pi + Bi i 

pn / Qc ~'Qn 

Fig. 6. (a) Comparison of the classical (QoP'Q'Po) and nonclassical (QnP'Q'P~) three- 
phase equilibrium curves projected into the 02 = 0 plane of the density space with the 
parameter values a = 0.1, /~ = 0.35, n = 2, kl = k2 = 1.0, a~ = -1,5,  and D = 1.5 
(D has been chosen greater than unity to visually emphasize the discrepancies between 
the curves). The classical curve is another perspective of the curve QP'Q'P shown in 
Fig. 5. The triangles joining equilibrium phases are not shown, for the sake of clarity, 
but in the classical case they are mutually parallel (and perpendicular to the plane of the 
projection), and in the nonclassical case they are almost, but not exactly, parallel. 
(b) The same curves as in (a), but here projected into the p3 = 0 plane. 

in the present  case, there  will be a nonclass ical  f lat tening near  these cri t ical  
poin ts  and  tha t  the curve will be nonana ly t i c  there  bu t  remain  analyt ic  else- 
where. In  fact,  the shape of  this Curve near  one o f  the cri t ical  points  is 
asympto t ica l ly  the same as the s h a p e - - w h i c h  we s tudied in the previous 
s e c t i o n - - o f  the nonclassical  b inoda l  curve at  a cri t ical  point .  In  par t icular ,  
the pa rabo l i c  aspect  o f  the classical curve at  this po in t  is changed to one 
with curva ture  descr ibed by  the exponent  (1 - ~)//3. The  classical and  non-  
classical three-phase  equi l ibr ium curves are c o m p a r e d  in Fig. 6. [We note 
tha t  locat ing this curve in an app rop r i a t e  exper imenta l  system may  be one of  
the s implest  ways o f  measur ing  bo th  the exponent  (1 - c0/~ and the " o u t - o f -  
p l a n e "  exponent  (1 + /3) / /3 - - the  la t ter  has apparen t ly  has been measured  
yet  by  any method . ]  

Besides the expected f lat tening at  the cri t ical  points  P' and  Q',  the non-  
classical  curves in Figs. 6a and 6b also show a devia t ion  f rom the classical 
shape as the noncr i t ica l  phases  P ,  and  Q,  (in equi l ibr ium with the cri t ical  
phases  P '  and  Q', respectively) are app roached  a long the space curve. We 
at  present  believe tha t  these devia t ions  are ar t i facts  o f  our  formula t ion ,  bu t  
it is interest ing to note  tha t  F i sher  and  Sarbach  ~1~ have suggested tha t  s imilar  
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deviations may occur in real fluids (this suggestion is based upon the tricritical 
phase behavior of  the spherical model). 

As we have mentioned, we have yet to explicitly calculate the densities 
except on a number of  important  sample field-space trajectories. We note 
that if the densities are known analytically on certain manifolds (for example, 
on the manifolds a~ = 1 and a4 = - 1 ) ,  the tricritical scaling properties of 
F' allow those results to be extended to the whole field space (this was pointed 
out by Gritfiths). Yet, despite the fact that our knowledge of the details of  
this model is incomplete, we have in this paper been able to make a number  
of predictions which may now be critically tested by experiment. 

There is one detail of  our formulation which, while completely unrelated 
to the question of nonclassical scaling, touches upon a topic of  recent theor- 
etical interest. Fisher and Sarbach ~~ have pointed out that there are a 
number of  dimensionless "tricritical ampli tudes" which are predicted to be 
zero by classical theory but known to be nonzero in various experimental 
systems other than in ordinary fluid mixtures (where they have not been 
measured at all) and in some model calculations. The most significant of  
these discrepancies may be expressed, in the language of this model, as the 
fact that, classically, the curve p2 vs. a4, say, on the manifold cl = R1 = R2 = 0 
(a~ < 0) is tangent to the corresponding curve on the manifold c2 = c3 = 
R~ = 0 (a~ > 0) at the point of  intersection, the tricritical point (a~ = 0), 
whereas in reality they are not tangent. These curves are tangent in the present 
nonclassical model, but this is only due to the fact that we have inadvertently 
chosen go such that go = gl = g2 on the cz = R~ = R2 = 0 manifold. The 
function go may be altered [for example, a term of the form 

~ ( c l  - c 2 ) 2 ~ ( c ~  - c~)2m(c~ - c,)~m 

might be inserted into the definition of go introduced previously, with n in 
Eq. (46) chosen such that 2n = 3m, with rn a positive integer] to produce 
(qualitatively) the experimental result, but the fact that our formulation is 
equivocal on this question suggests that there remains a level of  detail of  
these models yet to be explored. 

5. C O N C L U D I N G  R E M A R K S  

The nonclassical equation of state developed in the preceding section to 
describe phase behavior near a tricritical point may be viewed as the embodi- 
ment of the tricritical scaling hypotheses of previous authors (~,~ in an explicit 
free energy formulation. Perhaps the most important  result of this develop- 
ment is that in this formulation, despite its algebraic complexities, the 
mechanism mediating the competition between critical scaling and tricritical 
scaling, and the resulting crossover f rom one scaling region to the other, 
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takes a very simple form, i.e., the terms in the density relations bearing non- 
classical critical exponents simply cancel out as the tricritical point is 
approached. 

Our development of the nonclassical free energies introduced here 
originated with the question of how and to what extent the predictions of 
classical theory should be modified to take into account the nonclassical 
critical scaling behavior characteristic of real fluid mixtures. We have pro- 
vided a partial answer to this question, in that the qualitative differences 
between the phase diagrams of the classical and nonclassical formulations 
certainly imply the type of discrepancies we might expect to see between 
the predictions of classical theory and the behavior of real fluid mixtures. 

If these nonclassical equations of state do, in fact, represent a significant 
improvement over the classical formulations upon which they are based, 
then the development of  our "rescaling technique" to the point where it 
could be applied to classical formulations generally would be a valuable 
theoretical contribution. We do not at present know how to proceed with 
such a development, but it is apparent that our interpretation of  the basic 
nonclassical scaling hypothesis of the technique in terms of a particular 
parametric form is probably too narrow a point of view to form a basis for 
this development. We can only suggest that what is probably required is a 
direct identification between the variables which appear in the scaling 
hypothesis and the topological features of the classical phase diagram. Such 
an identification would then be independent of the often arbitrary choice of 
parametrization of the classical formulation in question. 
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